Marching Cubes in Python
This post takes the form of a heavily commented implementation of the Marching Cubes in Python. I needed to write code to do this myself, and it took a couple of tries to really get my head around the algorithm. The examples I could find online were not exactly what I was looking for, so here is my contribution that might just be what someone else is looking for.
The purpose of Marching Cubes is to create a triangulated isosurface through a scalar field with values known on a regular structured three-dimensional grid. A common usage is visualisation:
Below is my code, that you are free to use.
"""Take unstructured cuts through a 3D scalar field using marching cubes algorithm.
The algorithm was first proposed for medical scan data by:
Lorensen, E., and Cline, H., 1987.
"Marching cubes: A high resolution 3D surface construction algorithm."
SIGGRAPH Comput. Graph. 21, 4, pp. 163-169.
https://doi.org/10.1145/37402.37422
This implementation is based on that of Paul Bourke:
http://www.paulbourke.net/geometry/polygonise/
The edge and triangle lookup tables, being tedious to derive, are taken
verbatim from the above reference.
The below code is released into the public domain according to CC0.
http://creativecommons.org/publicdomain/zero/1.0
"""
import numpy as np
# A cube has 8 vertices. We can index them as follows:
#
# 4----------5
# /| /|
# / | / |
# / | / | k
# 7----------6 | ^
# | | | | |
# | 0------|---1 .--> i
# | / | / /
# | / | / j
# |/ |/
# 3----------2
#
# This function constructs indexing vectors that slice a 3D (ni, nj, nk) numpy
# array to select a vertex according to this convention. Indexing using the
# return value of this function yields an (ni-1, nj-1, nk-1) matrix of data,
# with one point for each cell.
def _vijk(shape, v):
"""Get indexing vector to extract vertex v from a matrix of size (ni, nj, nk)."""
ni, nj, nk = shape
if v == 0:
return slice(0, ni - 1), slice(0, nj - 1), slice(0, nk - 1)
elif v == 1:
return slice(1, ni), slice(0, nj - 1), slice(0, nk - 1)
elif v == 2:
return slice(1, ni), slice(1, nj), slice(0, nk - 1)
elif v == 3:
return slice(0, ni - 1), slice(1, nj), slice(0, nk - 1)
elif v == 4:
return slice(0, ni - 1), slice(0, nj - 1), slice(1, nk)
elif v == 5:
return slice(1, ni), slice(0, nj - 1), slice(1, nk)
elif v == 6:
return slice(1, ni), slice(1, nj), slice(1, nk)
elif v == 7:
return slice(0, ni - 1), slice(1, nj), slice(1, nk)
# A cube has 12 edges; we can index them as follows:
#
# .----4----.
# /| /|
# 7 | 5 |
# / 8 / 9 k
# .-----6---. | ^
# | | | | |
# | .--0--|---. .--> i
# 11 / 10 / /
# | 3 | 1 j
# |/ |/
# .----2----.
#
# This function makes a pair of 3-tuples that index the start and end of edge
# e, for a given (i,j,k) cell in an (ni,nj,nk) numpy array.
def _eijk(i, j, k, e):
"""Get 2 (i,j,k) indexing vectors that will extract the start and end
points of edge e for cell i, j, k of a 3D matrix."""
if e == 0:
return (i, j, k), (i + 1, j, k)
elif e == 1:
return (i + 1, j, k), (i + 1, j + 1, k)
elif e == 2:
return (i + 1, j + 1, k), (i, j + 1, k)
elif e == 3:
return (i, j + 1, k), (i, j, k)
elif e == 4:
return (i, j, k + 1), (i + 1, j, k + 1)
elif e == 5:
return (i + 1, j, k + 1), (i + 1, j + 1, k + 1)
elif e == 6:
return (i + 1, j + 1, k + 1), (i, j + 1, k + 1)
elif e == 7:
return (i, j + 1, k + 1), (i, j, k + 1)
elif e == 8:
return (i, j, k), (i, j, k + 1)
elif e == 9:
return (i + 1, j, k), (i + 1, j, k + 1)
elif e == 10:
return (i + 1, j + 1, k), (i + 1, j + 1, k + 1)
elif e == 11:
return (i, j + 1, k), (i, j + 1, k + 1)
# The 8 vertices of the cube may each be above or below the threshold. We can
# encode this information as a 'cube_index', an 8-bit integer where the n-th
# bit is high if the n-th vertex is below the threshold. This function returns
# a matrix of (ni-1, nj-1, nk-1) cube indices for every cell in an (ni, nj, nk)
# matrix of values to isosurfac. Without loss of generality, the threshold is
# taken as zero.
def _cube_index(d):
"""For a 3D array of signed distances, get cube indices."""
# Preallocate return matrix
ni, nj, nk = d.shape
ind = np.zeros((ni - 1, nj - 1, nk - 1), dtype=int)
# Loop over vertices
for v in range(8):
# Select data corresponding to current vertex, then bitwise or with
# 2**v to set the vth bit when the vertex is below the threshold
ind[d[_vijk(d.shape, v)] < 0.0] |= 2**v
return ind
# For all of the 2**8 = 256 posible values of cube_index, the 'edge_index' is a
# number indicating which of the cube's edges are cut, encoded as a 12-bit
# integer with one bit for each edge. The EDGE_TABLE with 256 entries allows
# lookup of the edge_index for a given cube index. The data in encoded hex
# format.
EDGE_TABLE = np.array(
[
0x0, 0x109, 0x203, 0x30A, 0x406, 0x50F, 0x605, 0x70C,
0x80C, 0x905, 0xA0F, 0xB06, 0xC0A, 0xD03, 0xE09, 0xF00,
0x190, 0x99, 0x393, 0x29A, 0x596, 0x49F, 0x795, 0x69C,
0x99C, 0x895, 0xB9F, 0xA96, 0xD9A, 0xC93, 0xF99, 0xE90,
0x230, 0x339, 0x33, 0x13A, 0x636, 0x73F, 0x435, 0x53C,
0xA3C, 0xB35, 0x83F, 0x936, 0xE3A, 0xF33, 0xC39, 0xD30,
0x3A0, 0x2A9, 0x1A3, 0xAA, 0x7A6, 0x6AF, 0x5A5, 0x4AC,
0xBAC, 0xAA5, 0x9AF, 0x8A6, 0xFAA, 0xEA3, 0xDA9, 0xCA0,
0x460, 0x569, 0x663, 0x76A, 0x66, 0x16F, 0x265, 0x36C,
0xC6C, 0xD65, 0xE6F, 0xF66, 0x86A, 0x963, 0xA69, 0xB60,
0x5F0, 0x4F9, 0x7F3, 0x6FA, 0x1F6, 0xFF, 0x3F5, 0x2FC,
0xDFC, 0xCF5, 0xFFF, 0xEF6, 0x9FA, 0x8F3, 0xBF9, 0xAF0,
0x650, 0x759, 0x453, 0x55A, 0x256, 0x35F, 0x55, 0x15C,
0xE5C, 0xF55, 0xC5F, 0xD56, 0xA5A, 0xB53, 0x859, 0x950,
0x7C0, 0x6C9, 0x5C3, 0x4CA, 0x3C6, 0x2CF, 0x1C5, 0xCC,
0xFCC, 0xEC5, 0xDCF, 0xCC6, 0xBCA, 0xAC3, 0x9C9, 0x8C0,
0x8C0, 0x9C9, 0xAC3, 0xBCA, 0xCC6, 0xDCF, 0xEC5, 0xFCC,
0xCC, 0x1C5, 0x2CF, 0x3C6, 0x4CA, 0x5C3, 0x6C9, 0x7C0,
0x950, 0x859, 0xB53, 0xA5A, 0xD56, 0xC5F, 0xF55, 0xE5C,
0x15C, 0x55, 0x35F, 0x256, 0x55A, 0x453, 0x759, 0x650,
0xAF0, 0xBF9, 0x8F3, 0x9FA, 0xEF6, 0xFFF, 0xCF5, 0xDFC,
0x2FC, 0x3F5, 0xFF, 0x1F6, 0x6FA, 0x7F3, 0x4F9, 0x5F0,
0xB60, 0xA69, 0x963, 0x86A, 0xF66, 0xE6F, 0xD65, 0xC6C,
0x36C, 0x265, 0x16F, 0x66, 0x76A, 0x663, 0x569, 0x460,
0xCA0, 0xDA9, 0xEA3, 0xFAA, 0x8A6, 0x9AF, 0xAA5, 0xBAC,
0x4AC, 0x5A5, 0x6AF, 0x7A6, 0xAA, 0x1A3, 0x2A9, 0x3A0,
0xD30, 0xC39, 0xF33, 0xE3A, 0x936, 0x83F, 0xB35, 0xA3C,
0x53C, 0x435, 0x73F, 0x636, 0x13A, 0x33, 0x339, 0x230,
0xE90, 0xF99, 0xC93, 0xD9A, 0xA96, 0xB9F, 0x895, 0x99C,
0x69C, 0x795, 0x49F, 0x596, 0x29A, 0x393, 0x99, 0x190,
0xF00, 0xE09, 0xD03, 0xC0A, 0xB06, 0xA0F, 0x905, 0x80C,
0x70C, 0x605, 0x50F, 0x406, 0x30A, 0x203, 0x109, 0x0,
],
dtype=int,
)
# To make the isosurface, we need to assemble triangles from nodes cut
# partway along each edge of the cube. There might be anywhere between one and
# five triangles required, depending on exactly how the isosurface intersects
# the cube. Given some cut edges specified by an edge_index, TRI_TABLE
# indicates how the edges should be assembled for each of the 256 possible cases.
# The table is composed of sets of three edge indices for each required
# triangle, with a value of -1 to indicate the end of data for that cube index.
TRI_TABLE = np.array(
[
[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 1, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[1, 8, 3, 9, 8, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 8, 3, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[9, 2, 10, 0, 2, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[2, 8, 3, 2, 10, 8, 10, 9, 8, -1, -1, -1, -1, -1, -1, -1],
[3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 11, 2, 8, 11, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[1, 9, 0, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[1, 11, 2, 1, 9, 11, 9, 8, 11, -1, -1, -1, -1, -1, -1, -1],
[3, 10, 1, 11, 10, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 10, 1, 0, 8, 10, 8, 11, 10, -1, -1, -1, -1, -1, -1, -1],
[3, 9, 0, 3, 11, 9, 11, 10, 9, -1, -1, -1, -1, -1, -1, -1],
[9, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[4, 3, 0, 7, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 1, 9, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[4, 1, 9, 4, 7, 1, 7, 3, 1, -1, -1, -1, -1, -1, -1, -1],
[1, 2, 10, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[3, 4, 7, 3, 0, 4, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1],
[9, 2, 10, 9, 0, 2, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1],
[2, 10, 9, 2, 9, 7, 2, 7, 3, 7, 9, 4, -1, -1, -1, -1],
[8, 4, 7, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[11, 4, 7, 11, 2, 4, 2, 0, 4, -1, -1, -1, -1, -1, -1, -1],
[9, 0, 1, 8, 4, 7, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1],
[4, 7, 11, 9, 4, 11, 9, 11, 2, 9, 2, 1, -1, -1, -1, -1],
[3, 10, 1, 3, 11, 10, 7, 8, 4, -1, -1, -1, -1, -1, -1, -1],
[1, 11, 10, 1, 4, 11, 1, 0, 4, 7, 11, 4, -1, -1, -1, -1],
[4, 7, 8, 9, 0, 11, 9, 11, 10, 11, 0, 3, -1, -1, -1, -1],
[4, 7, 11, 4, 11, 9, 9, 11, 10, -1, -1, -1, -1, -1, -1, -1],
[9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[9, 5, 4, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 5, 4, 1, 5, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[8, 5, 4, 8, 3, 5, 3, 1, 5, -1, -1, -1, -1, -1, -1, -1],
[1, 2, 10, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[3, 0, 8, 1, 2, 10, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1],
[5, 2, 10, 5, 4, 2, 4, 0, 2, -1, -1, -1, -1, -1, -1, -1],
[2, 10, 5, 3, 2, 5, 3, 5, 4, 3, 4, 8, -1, -1, -1, -1],
[9, 5, 4, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 11, 2, 0, 8, 11, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1],
[0, 5, 4, 0, 1, 5, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1],
[2, 1, 5, 2, 5, 8, 2, 8, 11, 4, 8, 5, -1, -1, -1, -1],
[10, 3, 11, 10, 1, 3, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1],
[4, 9, 5, 0, 8, 1, 8, 10, 1, 8, 11, 10, -1, -1, -1, -1],
[5, 4, 0, 5, 0, 11, 5, 11, 10, 11, 0, 3, -1, -1, -1, -1],
[5, 4, 8, 5, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1],
[9, 7, 8, 5, 7, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[9, 3, 0, 9, 5, 3, 5, 7, 3, -1, -1, -1, -1, -1, -1, -1],
[0, 7, 8, 0, 1, 7, 1, 5, 7, -1, -1, -1, -1, -1, -1, -1],
[1, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[9, 7, 8, 9, 5, 7, 10, 1, 2, -1, -1, -1, -1, -1, -1, -1],
[10, 1, 2, 9, 5, 0, 5, 3, 0, 5, 7, 3, -1, -1, -1, -1],
[8, 0, 2, 8, 2, 5, 8, 5, 7, 10, 5, 2, -1, -1, -1, -1],
[2, 10, 5, 2, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1],
[7, 9, 5, 7, 8, 9, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1],
[9, 5, 7, 9, 7, 2, 9, 2, 0, 2, 7, 11, -1, -1, -1, -1],
[2, 3, 11, 0, 1, 8, 1, 7, 8, 1, 5, 7, -1, -1, -1, -1],
[11, 2, 1, 11, 1, 7, 7, 1, 5, -1, -1, -1, -1, -1, -1, -1],
[9, 5, 8, 8, 5, 7, 10, 1, 3, 10, 3, 11, -1, -1, -1, -1],
[5, 7, 0, 5, 0, 9, 7, 11, 0, 1, 0, 10, 11, 10, 0, -1],
[11, 10, 0, 11, 0, 3, 10, 5, 0, 8, 0, 7, 5, 7, 0, -1],
[11, 10, 5, 7, 11, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 8, 3, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[9, 0, 1, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[1, 8, 3, 1, 9, 8, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1],
[1, 6, 5, 2, 6, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[1, 6, 5, 1, 2, 6, 3, 0, 8, -1, -1, -1, -1, -1, -1, -1],
[9, 6, 5, 9, 0, 6, 0, 2, 6, -1, -1, -1, -1, -1, -1, -1],
[5, 9, 8, 5, 8, 2, 5, 2, 6, 3, 2, 8, -1, -1, -1, -1],
[2, 3, 11, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[11, 0, 8, 11, 2, 0, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1],
[0, 1, 9, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1],
[5, 10, 6, 1, 9, 2, 9, 11, 2, 9, 8, 11, -1, -1, -1, -1],
[6, 3, 11, 6, 5, 3, 5, 1, 3, -1, -1, -1, -1, -1, -1, -1],
[0, 8, 11, 0, 11, 5, 0, 5, 1, 5, 11, 6, -1, -1, -1, -1],
[3, 11, 6, 0, 3, 6, 0, 6, 5, 0, 5, 9, -1, -1, -1, -1],
[6, 5, 9, 6, 9, 11, 11, 9, 8, -1, -1, -1, -1, -1, -1, -1],
[5, 10, 6, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[4, 3, 0, 4, 7, 3, 6, 5, 10, -1, -1, -1, -1, -1, -1, -1],
[1, 9, 0, 5, 10, 6, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1],
[10, 6, 5, 1, 9, 7, 1, 7, 3, 7, 9, 4, -1, -1, -1, -1],
[6, 1, 2, 6, 5, 1, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1],
[1, 2, 5, 5, 2, 6, 3, 0, 4, 3, 4, 7, -1, -1, -1, -1],
[8, 4, 7, 9, 0, 5, 0, 6, 5, 0, 2, 6, -1, -1, -1, -1],
[7, 3, 9, 7, 9, 4, 3, 2, 9, 5, 9, 6, 2, 6, 9, -1],
[3, 11, 2, 7, 8, 4, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1],
[5, 10, 6, 4, 7, 2, 4, 2, 0, 2, 7, 11, -1, -1, -1, -1],
[0, 1, 9, 4, 7, 8, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1],
[9, 2, 1, 9, 11, 2, 9, 4, 11, 7, 11, 4, 5, 10, 6, -1],
[8, 4, 7, 3, 11, 5, 3, 5, 1, 5, 11, 6, -1, -1, -1, -1],
[5, 1, 11, 5, 11, 6, 1, 0, 11, 7, 11, 4, 0, 4, 11, -1],
[0, 5, 9, 0, 6, 5, 0, 3, 6, 11, 6, 3, 8, 4, 7, -1],
[6, 5, 9, 6, 9, 11, 4, 7, 9, 7, 11, 9, -1, -1, -1, -1],
[10, 4, 9, 6, 4, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[4, 10, 6, 4, 9, 10, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1],
[10, 0, 1, 10, 6, 0, 6, 4, 0, -1, -1, -1, -1, -1, -1, -1],
[8, 3, 1, 8, 1, 6, 8, 6, 4, 6, 1, 10, -1, -1, -1, -1],
[1, 4, 9, 1, 2, 4, 2, 6, 4, -1, -1, -1, -1, -1, -1, -1],
[3, 0, 8, 1, 2, 9, 2, 4, 9, 2, 6, 4, -1, -1, -1, -1],
[0, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[8, 3, 2, 8, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1],
[10, 4, 9, 10, 6, 4, 11, 2, 3, -1, -1, -1, -1, -1, -1, -1],
[0, 8, 2, 2, 8, 11, 4, 9, 10, 4, 10, 6, -1, -1, -1, -1],
[3, 11, 2, 0, 1, 6, 0, 6, 4, 6, 1, 10, -1, -1, -1, -1],
[6, 4, 1, 6, 1, 10, 4, 8, 1, 2, 1, 11, 8, 11, 1, -1],
[9, 6, 4, 9, 3, 6, 9, 1, 3, 11, 6, 3, -1, -1, -1, -1],
[8, 11, 1, 8, 1, 0, 11, 6, 1, 9, 1, 4, 6, 4, 1, -1],
[3, 11, 6, 3, 6, 0, 0, 6, 4, -1, -1, -1, -1, -1, -1, -1],
[6, 4, 8, 11, 6, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[7, 10, 6, 7, 8, 10, 8, 9, 10, -1, -1, -1, -1, -1, -1, -1],
[0, 7, 3, 0, 10, 7, 0, 9, 10, 6, 7, 10, -1, -1, -1, -1],
[10, 6, 7, 1, 10, 7, 1, 7, 8, 1, 8, 0, -1, -1, -1, -1],
[10, 6, 7, 10, 7, 1, 1, 7, 3, -1, -1, -1, -1, -1, -1, -1],
[1, 2, 6, 1, 6, 8, 1, 8, 9, 8, 6, 7, -1, -1, -1, -1],
[2, 6, 9, 2, 9, 1, 6, 7, 9, 0, 9, 3, 7, 3, 9, -1],
[7, 8, 0, 7, 0, 6, 6, 0, 2, -1, -1, -1, -1, -1, -1, -1],
[7, 3, 2, 6, 7, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[2, 3, 11, 10, 6, 8, 10, 8, 9, 8, 6, 7, -1, -1, -1, -1],
[2, 0, 7, 2, 7, 11, 0, 9, 7, 6, 7, 10, 9, 10, 7, -1],
[1, 8, 0, 1, 7, 8, 1, 10, 7, 6, 7, 10, 2, 3, 11, -1],
[11, 2, 1, 11, 1, 7, 10, 6, 1, 6, 7, 1, -1, -1, -1, -1],
[8, 9, 6, 8, 6, 7, 9, 1, 6, 11, 6, 3, 1, 3, 6, -1],
[0, 9, 1, 11, 6, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[7, 8, 0, 7, 0, 6, 3, 11, 0, 11, 6, 0, -1, -1, -1, -1],
[7, 11, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[3, 0, 8, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 1, 9, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[8, 1, 9, 8, 3, 1, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1],
[10, 1, 2, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[1, 2, 10, 3, 0, 8, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1],
[2, 9, 0, 2, 10, 9, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1],
[6, 11, 7, 2, 10, 3, 10, 8, 3, 10, 9, 8, -1, -1, -1, -1],
[7, 2, 3, 6, 2, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[7, 0, 8, 7, 6, 0, 6, 2, 0, -1, -1, -1, -1, -1, -1, -1],
[2, 7, 6, 2, 3, 7, 0, 1, 9, -1, -1, -1, -1, -1, -1, -1],
[1, 6, 2, 1, 8, 6, 1, 9, 8, 8, 7, 6, -1, -1, -1, -1],
[10, 7, 6, 10, 1, 7, 1, 3, 7, -1, -1, -1, -1, -1, -1, -1],
[10, 7, 6, 1, 7, 10, 1, 8, 7, 1, 0, 8, -1, -1, -1, -1],
[0, 3, 7, 0, 7, 10, 0, 10, 9, 6, 10, 7, -1, -1, -1, -1],
[7, 6, 10, 7, 10, 8, 8, 10, 9, -1, -1, -1, -1, -1, -1, -1],
[6, 8, 4, 11, 8, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[3, 6, 11, 3, 0, 6, 0, 4, 6, -1, -1, -1, -1, -1, -1, -1],
[8, 6, 11, 8, 4, 6, 9, 0, 1, -1, -1, -1, -1, -1, -1, -1],
[9, 4, 6, 9, 6, 3, 9, 3, 1, 11, 3, 6, -1, -1, -1, -1],
[6, 8, 4, 6, 11, 8, 2, 10, 1, -1, -1, -1, -1, -1, -1, -1],
[1, 2, 10, 3, 0, 11, 0, 6, 11, 0, 4, 6, -1, -1, -1, -1],
[4, 11, 8, 4, 6, 11, 0, 2, 9, 2, 10, 9, -1, -1, -1, -1],
[10, 9, 3, 10, 3, 2, 9, 4, 3, 11, 3, 6, 4, 6, 3, -1],
[8, 2, 3, 8, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1],
[0, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[1, 9, 0, 2, 3, 4, 2, 4, 6, 4, 3, 8, -1, -1, -1, -1],
[1, 9, 4, 1, 4, 2, 2, 4, 6, -1, -1, -1, -1, -1, -1, -1],
[8, 1, 3, 8, 6, 1, 8, 4, 6, 6, 10, 1, -1, -1, -1, -1],
[10, 1, 0, 10, 0, 6, 6, 0, 4, -1, -1, -1, -1, -1, -1, -1],
[4, 6, 3, 4, 3, 8, 6, 10, 3, 0, 3, 9, 10, 9, 3, -1],
[10, 9, 4, 6, 10, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[4, 9, 5, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 8, 3, 4, 9, 5, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1],
[5, 0, 1, 5, 4, 0, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1],
[11, 7, 6, 8, 3, 4, 3, 5, 4, 3, 1, 5, -1, -1, -1, -1],
[9, 5, 4, 10, 1, 2, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1],
[6, 11, 7, 1, 2, 10, 0, 8, 3, 4, 9, 5, -1, -1, -1, -1],
[7, 6, 11, 5, 4, 10, 4, 2, 10, 4, 0, 2, -1, -1, -1, -1],
[3, 4, 8, 3, 5, 4, 3, 2, 5, 10, 5, 2, 11, 7, 6, -1],
[7, 2, 3, 7, 6, 2, 5, 4, 9, -1, -1, -1, -1, -1, -1, -1],
[9, 5, 4, 0, 8, 6, 0, 6, 2, 6, 8, 7, -1, -1, -1, -1],
[3, 6, 2, 3, 7, 6, 1, 5, 0, 5, 4, 0, -1, -1, -1, -1],
[6, 2, 8, 6, 8, 7, 2, 1, 8, 4, 8, 5, 1, 5, 8, -1],
[9, 5, 4, 10, 1, 6, 1, 7, 6, 1, 3, 7, -1, -1, -1, -1],
[1, 6, 10, 1, 7, 6, 1, 0, 7, 8, 7, 0, 9, 5, 4, -1],
[4, 0, 10, 4, 10, 5, 0, 3, 10, 6, 10, 7, 3, 7, 10, -1],
[7, 6, 10, 7, 10, 8, 5, 4, 10, 4, 8, 10, -1, -1, -1, -1],
[6, 9, 5, 6, 11, 9, 11, 8, 9, -1, -1, -1, -1, -1, -1, -1],
[3, 6, 11, 0, 6, 3, 0, 5, 6, 0, 9, 5, -1, -1, -1, -1],
[0, 11, 8, 0, 5, 11, 0, 1, 5, 5, 6, 11, -1, -1, -1, -1],
[6, 11, 3, 6, 3, 5, 5, 3, 1, -1, -1, -1, -1, -1, -1, -1],
[1, 2, 10, 9, 5, 11, 9, 11, 8, 11, 5, 6, -1, -1, -1, -1],
[0, 11, 3, 0, 6, 11, 0, 9, 6, 5, 6, 9, 1, 2, 10, -1],
[11, 8, 5, 11, 5, 6, 8, 0, 5, 10, 5, 2, 0, 2, 5, -1],
[6, 11, 3, 6, 3, 5, 2, 10, 3, 10, 5, 3, -1, -1, -1, -1],
[5, 8, 9, 5, 2, 8, 5, 6, 2, 3, 8, 2, -1, -1, -1, -1],
[9, 5, 6, 9, 6, 0, 0, 6, 2, -1, -1, -1, -1, -1, -1, -1],
[1, 5, 8, 1, 8, 0, 5, 6, 8, 3, 8, 2, 6, 2, 8, -1],
[1, 5, 6, 2, 1, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[1, 3, 6, 1, 6, 10, 3, 8, 6, 5, 6, 9, 8, 9, 6, -1],
[10, 1, 0, 10, 0, 6, 9, 5, 0, 5, 6, 0, -1, -1, -1, -1],
[0, 3, 8, 5, 6, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[10, 5, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[11, 5, 10, 7, 5, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[11, 5, 10, 11, 7, 5, 8, 3, 0, -1, -1, -1, -1, -1, -1, -1],
[5, 11, 7, 5, 10, 11, 1, 9, 0, -1, -1, -1, -1, -1, -1, -1],
[10, 7, 5, 10, 11, 7, 9, 8, 1, 8, 3, 1, -1, -1, -1, -1],
[11, 1, 2, 11, 7, 1, 7, 5, 1, -1, -1, -1, -1, -1, -1, -1],
[0, 8, 3, 1, 2, 7, 1, 7, 5, 7, 2, 11, -1, -1, -1, -1],
[9, 7, 5, 9, 2, 7, 9, 0, 2, 2, 11, 7, -1, -1, -1, -1],
[7, 5, 2, 7, 2, 11, 5, 9, 2, 3, 2, 8, 9, 8, 2, -1],
[2, 5, 10, 2, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1],
[8, 2, 0, 8, 5, 2, 8, 7, 5, 10, 2, 5, -1, -1, -1, -1],
[9, 0, 1, 5, 10, 3, 5, 3, 7, 3, 10, 2, -1, -1, -1, -1],
[9, 8, 2, 9, 2, 1, 8, 7, 2, 10, 2, 5, 7, 5, 2, -1],
[1, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 8, 7, 0, 7, 1, 1, 7, 5, -1, -1, -1, -1, -1, -1, -1],
[9, 0, 3, 9, 3, 5, 5, 3, 7, -1, -1, -1, -1, -1, -1, -1],
[9, 8, 7, 5, 9, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[5, 8, 4, 5, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1],
[5, 0, 4, 5, 11, 0, 5, 10, 11, 11, 3, 0, -1, -1, -1, -1],
[0, 1, 9, 8, 4, 10, 8, 10, 11, 10, 4, 5, -1, -1, -1, -1],
[10, 11, 4, 10, 4, 5, 11, 3, 4, 9, 4, 1, 3, 1, 4, -1],
[2, 5, 1, 2, 8, 5, 2, 11, 8, 4, 5, 8, -1, -1, -1, -1],
[0, 4, 11, 0, 11, 3, 4, 5, 11, 2, 11, 1, 5, 1, 11, -1],
[0, 2, 5, 0, 5, 9, 2, 11, 5, 4, 5, 8, 11, 8, 5, -1],
[9, 4, 5, 2, 11, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[2, 5, 10, 3, 5, 2, 3, 4, 5, 3, 8, 4, -1, -1, -1, -1],
[5, 10, 2, 5, 2, 4, 4, 2, 0, -1, -1, -1, -1, -1, -1, -1],
[3, 10, 2, 3, 5, 10, 3, 8, 5, 4, 5, 8, 0, 1, 9, -1],
[5, 10, 2, 5, 2, 4, 1, 9, 2, 9, 4, 2, -1, -1, -1, -1],
[8, 4, 5, 8, 5, 3, 3, 5, 1, -1, -1, -1, -1, -1, -1, -1],
[0, 4, 5, 1, 0, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[8, 4, 5, 8, 5, 3, 9, 0, 5, 0, 3, 5, -1, -1, -1, -1],
[9, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[4, 11, 7, 4, 9, 11, 9, 10, 11, -1, -1, -1, -1, -1, -1, -1],
[0, 8, 3, 4, 9, 7, 9, 11, 7, 9, 10, 11, -1, -1, -1, -1],
[1, 10, 11, 1, 11, 4, 1, 4, 0, 7, 4, 11, -1, -1, -1, -1],
[3, 1, 4, 3, 4, 8, 1, 10, 4, 7, 4, 11, 10, 11, 4, -1],
[4, 11, 7, 9, 11, 4, 9, 2, 11, 9, 1, 2, -1, -1, -1, -1],
[9, 7, 4, 9, 11, 7, 9, 1, 11, 2, 11, 1, 0, 8, 3, -1],
[11, 7, 4, 11, 4, 2, 2, 4, 0, -1, -1, -1, -1, -1, -1, -1],
[11, 7, 4, 11, 4, 2, 8, 3, 4, 3, 2, 4, -1, -1, -1, -1],
[2, 9, 10, 2, 7, 9, 2, 3, 7, 7, 4, 9, -1, -1, -1, -1],
[9, 10, 7, 9, 7, 4, 10, 2, 7, 8, 7, 0, 2, 0, 7, -1],
[3, 7, 10, 3, 10, 2, 7, 4, 10, 1, 10, 0, 4, 0, 10, -1],
[1, 10, 2, 8, 7, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[4, 9, 1, 4, 1, 7, 7, 1, 3, -1, -1, -1, -1, -1, -1, -1],
[4, 9, 1, 4, 1, 7, 0, 8, 1, 8, 7, 1, -1, -1, -1, -1],
[4, 0, 3, 7, 4, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[4, 8, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[9, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[3, 0, 9, 3, 9, 11, 11, 9, 10, -1, -1, -1, -1, -1, -1, -1],
[0, 1, 10, 0, 10, 8, 8, 10, 11, -1, -1, -1, -1, -1, -1, -1],
[3, 1, 10, 11, 3, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[1, 2, 11, 1, 11, 9, 9, 11, 8, -1, -1, -1, -1, -1, -1, -1],
[3, 0, 9, 3, 9, 11, 1, 2, 9, 2, 11, 9, -1, -1, -1, -1],
[0, 2, 11, 8, 0, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[3, 2, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[2, 3, 8, 2, 8, 10, 10, 8, 9, -1, -1, -1, -1, -1, -1, -1],
[9, 10, 2, 0, 9, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[2, 3, 8, 2, 8, 10, 0, 1, 8, 1, 10, 8, -1, -1, -1, -1],
[1, 10, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[1, 3, 8, 9, 1, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 9, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 3, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
],
dtype=int,
)
# Begin the main algorithm
def marching_cubes(data, dist):
"""Take an unstructured cut of a 3D scalar field using Marching Cubes.
Parameters
----------
data: (nvar, ni, nj, nk) array
`nvar` variables arranged on a three-dimensional structured grid.
`data` should contain at least three coordinates to enable plotting of
the isosurface, and any other scalar field of interest.
dist: (ni, nj, nk) array
The signed distance field at each grid point, `dist=0` sets the cut
location. To produce an isosurface of a scalar field, dist should be
the scalar field minus the desired isovalue.
Returns
-------
triangles: (ntri, 3, nvar) array
The unstructured cut is composed of `ntri` triangles, each with 3
vertices, holding values for each of the `nvar` data varaibles.
"""
_, ni, nj, nk = data.shape
# Find cube indices for every cell in the distance field
icube = _cube_index(dist)
# Find edge indices by looking up in the table
iedge = EDGE_TABLE[icube]
# Now loop over all cells and treat each one individually. The vast
# majority of cells are fully above or below the cut, so can be skipped.
# So doing this as a for loop is not too bad.
triangles = []
for i in range(ni - 1):
for j in range(nj - 1):
for k in range(nk - 1):
# Skip uncut cells
if not iedge[i, j, k]:
continue
# Preallocate for cut nodes that could be on any of 12 edges
cut_nodes = np.full((12, data.shape[0]), np.nan)
# Loop over the vertices
for e in range(12):
# If the e-th bit of edge index is set
if iedge[i, j, k] & 2**e:
# Get start and end indices for the current edge
ijk_st, ijk_en = _eijk(i, j, k, e)
# Add on a fourth dimension to slice all data rows
ijk4_st = (slice(None),) + ijk_st
ijk4_en = (slice(None),) + ijk_en
# Calculate length fraction along this edge
# frac = 0 if the cut is on edge start
# frac = 1 if the cut is on edge end
frac = -dist[ijk_st] / (dist[ijk_en] - dist[ijk_st])
# Should always be on unit interval
assert frac >= 0.
assert frac <= 1.
# Linearly interpolate from data and store cut node values
cut_nodes[e] = (
data[ijk4_st] + (data[ijk4_en] - data[ijk4_st]) * frac
)
# We have found all the vertices we will need
# Now use cube index to look up how to assemble into triangles
triangle_index = TRI_TABLE[icube[i, j, k]]
# Loop over the triangle indices in threes
for itri in range(0, len(triangle_index), 3):
# Sentinel value signals no more triangles
if triangle_index[itri] == -1:
break
# Pull out the cut edges for this triangle
triangles.append(cut_nodes[triangle_index[itri : itri + 3]])
# Concatenate all triangles into one matrix if any cells were cut
if triangles:
return np.stack(triangles)
else:
return None
# Example usage being main guard
if __name__=="__main__":
# Set up a test coordinate grid
nv = 40
xv = np.linspace(-1.,1.,nv)
yv = np.linspace(-1.,1.,nv+1)
zv = np.linspace(-1.,1.,nv+2)
xyz = np.stack(np.meshgrid(xv, yv, zv, indexing='ij'))
# Define two focii
xyzf1 = np.array([-0.2,0.,0.]).reshape(-1,1,1,1)
xyzf2 = np.array([0.2,0.,0.]).reshape(-1,1,1,1)
# Evaluate distances from the two focii
d1 = np.sqrt(np.sum((xyz-xyzf1)**2,axis=0))
d2 = np.sqrt(np.sum((xyz-xyzf2)**2,axis=0))
d = np.minimum(d1, d2)
# Calculate isosurface
tri = marching_cubes(xyz, d-0.25)
# Reformat for plotting
tri = tri.transpose(2, 1, 0).reshape(3,-1)
# Make plot (not the most efficient way to do this...)
import matplotlib.pyplot as plt
ax = plt.figure().add_subplot(projection='3d')
ax.scatter(*tri,'.',c=tri[1],alpha=0.3)
ax.axis('off')
ax.axis('tight')
ax.axis('equal')
plt.savefig('isosurface.svg')
2023-11-26